Тема урока: « Классификация и номенклатура органических соединений ». Цель урока: Развитие методологических знаний, а также знаний о многообразии и различии. Составления названий органических соединений по структурной формуле

, Конкурс «Презентация к уроку»

Класс: 10

Презентация к уроку















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Класс: 10.

Базовый учебник: химия 10 класс О.С.Габриелян.

Цель урока : познакомить учащихся с общей классификацией органических соединений. Рассмотреть классификацию органических веществ по характеру углеродного скелета и классификацию по функциональной группе.

Оборудование: компьютер, мультимедийный проектор, презентация.

Тип урока: комбинированный

Ход урока

I. Организационный момент.

II. Классификация органических соединений.

В природе существуют несколько миллионов органических соединений. Каждый год создаются все новые и новые органические вещества. Чтобы разобраться в огромном количестве органических соединений, необходимо их классифицировать. Существуют разные способы классификации органических соединений. Мы будем рассматривать два способа классификации: первый - по характеру углеродной цепи, второй – по функциональной группе. Слайд 2

Последовательность химически связанных атомов углерода в молекуле составляет ее углеродный скелет. Это основа органического соединения. Поэтому первым признаком классификации органического соединения служит классификация по строению углеродного скелета. Слайд 3

По характеру углеродного скелета органического соединения вещества можно разделить на открытые или ациклические (приставка а- обозначает отрицание, т.е. это незамкнутые цепи) и циклические в них углеродная цепь замкнута в цикл. Слайд 4

Углеродный скелет может быть также неразветвленным или разветвленным. Слайд 5

Органические соединения можно подразделять также по кратности связи. Соединения, содержащие только одинарные связи С-С, называются насыщенными или предельными. Соединения со связями С=С или СС называются ненасыщенными или непредельными. Слайд 6

Циклические соединения – это соединения, в которых углеродные атомы образуют цикл или замкнутую цепь. Циклические соединения делятся на две большие группы: карбоциклические и гетероциклические. Карбоциклические содержат в циклах только атомы углерода и подразделяются на алициклические и ароматические. Гетероциклические соединения содержат циклы, в составе которых кроме атомов С входят один или несколько других атомов, так называемых гетероатомов (греч. heteros - другой) – O, S, N. Слайд 7

Закрепляем новый материал выполнением следующего задания: используя схему классификации, определить к какому классу относятся представленные соединения.

CH 2 =CH–CH 3 CH 3 –CH 3 CH 2 = CH–CH=CH 2 Слайд 8

Рассматриваем второй способ классификации органических соединений, по наличию функциональных групп. Формулируем определение функциональной группы, как группы атомов, определяющей химические свойства соединения и принадлежность его к определенному классу органических соединений. Функциональная группа является основным признаком, по которому органические соединения относят к определенному классу. Слайд 9,10

Ставим перед учениками задачу: рассмотреть основные классы органических соединений с точки зрения наличия кратных связей. Рассматриваем более подробно классы органических соединений, относящихся к группе ациклических соединений это классы алканов, алкенов, алкинов и алкадиенов. Слайд 11

К ациклическим соединениям кроме углеводородов, относятся вещества содержащие разнообразные функциональные группы. Главный критерий, по которому вещества относят к ациклическим соединениям – это наличие незамкнутой цепи углеродных атомов. Рассматриваем более подробно классы кислородосодержащих органических соединений. Слайд 12

Закрепляем изученный материал. Определить к какому классу относятся соединения? Слайд 13

III. Рефлексия .

Список использованной литературы:

  1. Учебник Химия 10 класс О.С. Габриелян
  2. Поурочные разработки по химии М.Ю. Горковенко
  3. festival.1september.ru/articles/586588/
  4. www.xumuk.ru/rhf/
  5. festival.1september.ru/articles/630735

Цели: развитие методологических знаний, а также знаний о многообразии и различии свойств органических соединений. Ввести понятие о классах и функциональных группах. Познакомить школьников с классификацией и правилами: составления структурных формул по названию органического соединения, составления названий органических соединений по структурной формуле.

Методы обучения: беседа, рассказ, объяснение, демонстрация натуральных объектов, фронтальная работа с самопроверкой, выступление учащихся, опережающее обучение.

Оборудование : коллекции органических веществ разных классификационных групп: парафиновая свечка (алканы), сахар (углеводы), уксус (карбоновые кислоты), куриное яйцо (белки), жидкость для снятия лака (ацетон), крем для рук (глицерин); компьютер, мультимедийный проектор, слайды, таблицы, алгоритмы составления названий органических соединений, листочки с копировальной бумагой.

Межпредметные связи: русский язык (состав слова), биология.

Внутрипредметные связи: типы гибридизации, электронные орбитали, химическая связь.

План урока:

    Организация начала урока.

    Обобщение знаний об особенностях строения органических соединений.

    Многообразие органических веществ.

    Классификация органических соединений.

    Номенклатура органических веществ и ее виды.

    Составления структурных формул по названию органического соединения.

    Составления названий органических соединений по структурной формуле.

    Подведение итогов урока.

    Обсуждение домашнего задания.

Ход урока

1. Организация начала урока.

Цель: подготовка учащихся к работе на уроке.

Химия – предмет в достаточной степени трудный, сложный, опирающийся на знания не только по физике и биологии, но и по математике, предмет, успехи в изучении которого зависят от вашего логического мышления, памяти, способности аналитически мыслить и сопоставлять.

Химия – это предельно увлекательный интересный предмет, который поможет проникнуть в самую глубь процессов окружающего мира.

Тема сегодняшнего урока «Классификация и номенклатура органических соединений». Мы познакомимся с многообразием органических соединений. Слайд №1

2. Подготовка учащихся к восприятию нового материала.

Цель: выявление уровня знаний учащихся по ранее изученным темам, ликвидация недостатков.

Вспомним, об особенностях строения органических соединений.

Учащимся предлагается заполнить таблицу (на листочках с копировальной бумагой).

Характеристика углерод – углеродных связей. Слайд №2

Заполненную таблицу сдать учителю, копия остаётся у учеников.

Фронтальная беседа (вопросы и задания):

Проврете, правильно ли вы заполнили таблицу? Слайд №3

3–7. Усвоение новых знаний, закрепление полученных знаний .

Цель: с ообщение учащимся нового материала, проверка восприятия, осмысления, устранения существенных пробелов, организация деятельности по применению изученного материала .

3. Многообразие органических веществ.

Ответьте на несколько вопросов.

Какие соединения называются органическими?

Назовите органические соединения, которые используются в повседневной жизни.

Демонстрация органических веществ разных классификационных групп парафиновая свечка (алканы), сахар (углеводы), уксус (карбоновые кислоты), куриное яйцо (белки), жидкость для снятия лака (ацетон), крем для рук (глицерин);

Слайд№5

4. Классификация органических соединений.

В природе существуют несколько миллионов органических соединений. Каждый год содаются все новые и новые органические соединения.

Чтобы разобраться в огромном количестве органических соединений, необходимо их классифицировать.

Проведем аналогию с книгами в библиотеке. Представьте себе, что все книги лежат в одной куче. Сможете ли вы найти быстро нужную вам книгу? Нет.

Необходима классификация, которую каждый хозяин библиотеки может произвести по-разному – расположив книги в алфавитном порядке по фамилиям авторов, по тематике, по возрасту читателей (книги для взрослых, для детей), по цвету переплетов (чтобы красиво смотрелись в шкафу) и т.п. В результате получаются по-разному организованные коллекции, причем ни одна классификация не хуже другой. Просто, в зависимости от целей коллекционера, одна из классификаций может быть удобнее других.

Также и органические вещества можно делить на высоко- и низкомолекулярные соединения, на вещества, существующие природе и синтезированные человеком, вещества, применяемые в качестве лекарств, красителей, растворителей, и т.п. Та классификация, которую мы рассматриваем – классификация по строению веществ – наиболее удобна с точки зрения изучения их свойств. Вещества, близкие по строению, проявляют схожие свойства. Последовательность химически связанных атомов углерода в молекуле составляет ее углеродный скелет. Это основа органического соединения.

Поэтому первым признаком классификации органического соединения служит классификация по строению углеродного скелета . Скелет может быть неразветвленным, разветвленным, циклическим.

Слайд №6

Молекулы могут быть ациклическими, когда атомы углерода не связаны в цикл, и циклическими. Слайд №7

Ациклические подразделяются на предельные (насыщенные) и непредельные (ненасыщенные)

В зависимости от природы атомов, состовляющих цикл различают соединения: карбоциклические – имеющие в цикле только атомы углерода, а если в цикл входят другие атомы (например, O, S, N) то такие соединения называют гетероциклическими. Примером гетероциклического соединения, например, может служить печально известный никотин.

Чем известен никотин? Слайд №8

Гетероциклические соединения широко распространены в природе и имеют огромное значение для жизнедеятельности растений и животных. Например, хлорофилл, (Слад №9) с помощью которого растения осуществляют фотосинтез – связывают углекислый газ и выделяют кислород – это гетероциклическое соединение. Молекулы нуклеиновых кислот, ответственных за передачу наследственной информации в нашем организме, также содержат гетероциклы.

Второй классификационный признак : природа функциональных групп.

Функциональная группа – эта группа атомов или структурный фрагмент молекулы, которая обуславливает характерные химические свойства определенного класса органических соединений, ее содержащих. Слайд №10

5. Номенклатура органических веществ и ее виды.

Номенклатура – совокупность названий индивидуальных химических веществ, их групп и классов, а также правила составления их названий. Название вещества должно отражать не только его качественный и количественный состав, но и однозначно показывать его химическое строение, названию должна соответствовать единственная формула строения.

В настоящее время для наименования органических соединений применяются три типа номенклатуры: тривиальная, рациональная и систематическая номенклатура - номенклатура IUPAC (ИЮПАК) - (Международного союза теоретической и прикладной химии). Выступление учащихся. Приложение №1 Слайд №11

Вспомним русский язык. Из каких частей состоит слово?

Приставка, корень, суффиксы, окончание.

Название органического соединения так же состоит из приставки (префикса), корня, суффикса первого порядка, суффикса второго порядка.

Номенклатура ИЮПАК составлена по заместительному принципу. Представляется, что структурная формула состоит из основной цепи и заместителей.

Корень слова определяет основную цепь органического соединения, зависит от количества атомов в цепи. Слайд №12 (Считалка)

Префиксы указывают на наличие функциональной группы (кроме старшей), радикалы. Радикалы образованы из предельных углеводородов отнятием водорода от конечного углеродного атома называют заменяя суффикс «ан в названии углеводорода суффиксом «ил». Например, метан- метил. Слайд №13 (Кассы неорганических соединений и название характеристических групп.)

Суффикс первого порядка указывает на определенный вид связи атомов углерода в соединении.

Суффикс второго порядка указывает на наличие старшей функциональной группы.

В названии органического соединения используют локанты и множительные приставки.

Локанты – цифры или буквы указывающие положение заместителей и кратных связей. Они могут ставятся перед префиксом или после суффикса. Множительные приставки указывают число одинаковых заместителей или кратных связей. (ди-, три-, тетро-, пенто-)

6. Составления структурных формул по названию органического соединения.

Разберем на составные части название органического соединения:

3-этилпентан (Работа у доски).

Определим корень (слово, указывающее наибольшее количество атомов углерода) пент. Выделим значком для корня. Перед корнем выделяем префикс 3-этил. После корня укажем суффикс «ан».

Составим структурную формулу по плану:

    Составляем цепь из углеродов, в количестве указанном в корне.

    Прономеруем атомы углерода.

    Укажем радикал у третьего атома углерода, согласно префиксу.

    Суффикс «ан» указывает на одинарную связь между атомами углерода.

    Допишем недостающие атомы водорода, согласно валентности.

    пять s- и одна p-связь Корень эт - С2 ; Суффикс илен = связь

    три s- и две p-связи

    проставим недостающие атомы водорода

    Ответ: пять s- и одна p-связь. А 15-3

    7. Составления названий органических соединений по структурной формуле.

    Выполним обратное задание. Составим название органического соединения по ее структурной формуле.

    Работа с учебником с.46 (Химия 10 класс, Кузнецова Н.Е.).

    Прочитайте правила составления названий органических соединений. Составите название органического соединения по структурной формуле.

    8. Подведение итогов урока.

    Цель: обобщить материал урока, оценить работу учащихся на уроке. Назовите причины многообразия органических соединений.

    Сформулируйте обобщающие выводы по изученному материалу.

    Слайды с 2 по 15.

    Оценки : Учитель благодарит учащихся за урок. Активным учащимся выставляет оценки. Оценки за проверочную работу, будут выставлены на следующем уроке.

    9. Обсуждение домашнего задания.

    Цель: дать задание, которое способствует повышению облученности, повышает интерес к химии; проинструктировать учащихся о его выполнении.

    Домашнее задание: Выполнить задание №4, №5 с.48. Творческая работа:

    составить кроссворд (10 слов) по теме « Методы исследования органических соединений» с.49-53. Слайд №16

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №2

Разработка урока по теме.

Классификация органических соединений

9 класс

Учитель: Носова Е.В.

Цели урока:

Образовательная.

Ознакомить учащихся с основными классами органических соединений,

особенностями их состава, номенклатуры.

Дать понятия: гомологический ряд, вещества – гомологи, признаки, характерные для веществ одного гомологического ряда.

Воспитательная.

Диалектико – материалистическое, эстетическое, интернациональное.

Развивающая.

Развитие знаний о многообразии веществ в природе, особенностей строения

органических веществ, умения записывать молекулярные и структурные

формулы соединений. Развитие познавательного интереса к предмету, коммуникативные качества учащихся.

Оборудование: учебник, презентация к уроку, шаростержневые модели метана, этана, этена, этина.

Методы обучения: частично-поисковый; объяснительно – иллюстративный, наглядные, словесные

Тип урока . Изучение нового материала

Урок рассчитан для учащихся 9 класса с высоким и средним уровнями мотивации.

Ход урока

I. Актуализация знаний

1. Фронтальная беседа по вопросам прошлого урока.

1) Какие вещества называется органическими?

2) Дайте определение органической химии.

3) Основные положения теории строения органических соединений А. М. Бутлерова

4) Что понимают под химическим строением?

II. Изучение нового материала.

Запись темы урока «Классификация органических соединений»

Задачи урока .

    Изучить основные классы органических соединений, особенности их состава и номенклатуры.

    Выяснить понятия: гомологический ряд, вещества – гомологи, признаки, характерные для веществ одного гомологического ряда.

Проблема

В настоящее время существуют более 25 млн. различных веществ. Некоторые из них встречаются в природе, другие получаются синтетическим путем.

Почему органических веществ существует значительно больше, чем неорганических? (слайд)

В основе классификации органических соединений лежит теория строения А.М. Бутлерова. Основная часть молекул состоят из атомов углерода, непосредственно связанных между собой и образующих цепи.

1Изучение предельных углеводородов – алканов; другие названия алканов: насыщенные, предельные.

Запись молекулярных формул первых десяти представителей (дети записывают, используя учебник (О.С. Габриелян, стр. 203, табл. 9)) (см слайд)

Б) запись структурных формул отдельных представителей алканов и их название, таблица 9 учебника. (Слайд),

Причины названия: С1-С4 исторические, последующие члены гомологического ряда образуются от греческого ряда, которые указывают число атомов углерода, с прибавлением суффикса.

Основной считается международная, или Женевская номенклатура, основные ее принципы были приняты на международном съезде химиков в Женеве в 1892 г.

в) Вывод и запись общей формулы алканов, наличие одинарных связей в молекулах, общий суффикс в названии веществ

В ывод . Ряд веществ, расположенных в порядке возрастания относительных молекулярных масс, сходных по строению и свойствам, но отличающихся друг от друга по составу на одну или несколько групп - СН2-, называют гомологическим рядом.

Вещества такого ряда называют гомологами , (- СН2) – гомологическая разность

Таким образом, алканы – это углеводороды, которые имеют только одинарные связи, общую формулу С nH 2 n +2 , в названии суффикс «ан»

2 Изучение радикалов .

А) Демонстрация радикала на модели, формулировка понятие радикал стр.200 (частица, имеющая неспаренный электрон или свободную валентность) ,

Отличительные особенности в сравнении с алканами, делаем записи параллельно гомологическому ряду алканов.

Вывод. Общая формула радикалв, свободная валентность. С nH 2 n +1

3 Непредельные органические соединения - алкены .

А) Задание. Используя молекулярную и структурную формулы этена, составить гомологический ряд алкенов параллельно алканам (молекулярные и структурные формулы). (работа в парах)

Б) Назвать первых представителей алкенов. Обратить внимание на общее и особенное алканов и алкенов.

Дети формулируют вывод о алкенах.

Вывод. Алкены – это углеводороды, которые имеют одну двойную связь, общую формулу С nH 2 n , в названии суффикс «ен»

4 . Непредельные органические соединения – алкадиены.

А) Задание. Используя молекулярную и структурную формулы бутадиена -1,3 составить гомологический ряд алкадиенов параллельно алкенам (молекулярные и структурные формулы). (работа в парах)

Б) Называть первых представителей. Обратить внимание на общее и особенное алканов и алкенов, алкадиенов.

Дети формулируют вывод о алкадиенах. (см слайды)

Вывод. Алкадиены – это углеводороды, которые имеют две двойные связи, общую формулу С nH 2 n -2 , в названии суффикс «диен»

4. Непредельные органические соединения – алкины.

А ) Задание. Используя молекулярную и структурную формулы этина, составить гомологический ряд алкинов параллельно алкадиенам (молекулярные и структурные формулы). (Работа в парах)

Б) Называть первых представителей алкинов. Обратить внимание на общее и особенное алканов и алкенов.

Дети формулируют вывод о алкинах.

Вывод. Алкины – это углеводороды, которые имеют одну тройную связь, общую формулу С nH 2 n -2 , в названии суффикс «ин»

5. Кислородсодержащие органические соединения

А) предельные одноатомные спирты

Задание. Используя молекулярную и структурную формулы этанола, составить гомологический ряд предельных одноатомных спиртов. (Молекулярные и структурные формулы). (Работа в парах)

Называть первых представителей. Обратить внимание на общие особенности с алканами и группу - ОН.

Дети формулируют вывод о предельных одноатомных спиртах. (см слайды)

Вывод. Спирты – это соединения, в которых углеводородный радикал связан с гидроксильной группой - ОН. Общая формула R -ОН, в названии - суффикс «ол»

Б) Альдегиды

Задание. Используя молекулярную и структурную формулы метаналя, составить гомологический ряд альдегидов. (Молекулярные и структурные формулы). (Работа в парах)

Называть первых представителей. Сравнить с алканами, спиртами

Вывод. Альдегиды – это соединения, молекулы которых имеют группу - C = O связанную с

H

углеводородным радикалом (кроме первого представителя), в названии - суффикс «аль» R - C = O

Н

в) Карбоновые кислоты

Задание. Используя молекулярную и структурную формулу метановой кислоты, составить гомологический ряд карбоновых кислот. (молекулярные и структурные формулы). (работа в парах)

Называть первых представителей. Сравнить с спиртами

Вывод: карбоновые кислоты - это соединения, молекулы которых имеют группу,

- C = O

О H

связанную с углеводородным радикалом (кроме первого представителя). Общая формула R - C = O

О H

Группы атомов, определяющие принадлежность к определённому классу соединений и наиболее характерные свойства, называют функциональными группами.

6. Эфиры .

Продукты замещения атома водорода в гидроксильной группе спиртов на углеводородный радикал

Общая формула R 1 - O - R 2

Вывод по уроку. (Формулируют учащиеся)

Таким образом, существуют самые разные классы органических соединений: предельные, с одинарные связями между углеродными атомами, которые соединены с максимально возможным числом атомов водорода, т. е. насыщены до предела; классы непредельных углеводородов, в которых содержится двойные или тройные углерод – углеродные связи и органические вещества, содержащие функциональные группы.

Существует большое количество гомологических рядов, которые содержат большое число органических соединений, следовательно, гомологически ряды органических соединений - одна из причин их многообразия. Данное явление возможно благодаря тому, что атом углерода четырёхвалентен и может образовывать самой различной длины цепи из атомов углерода.

Конкретизировать особенности гомологических рядов

III. Закрепление знаний.

1.В тетради записываем заголовок « Органика в твоих руках»

Рисуем в тетради свои ладони, нумеруем пальцы, пишем название приставки, внутри рук - таблички из трёх граф и заполняем их.

2. Используя полученные на уроке знания и «ладошки» составить структурные формулы веществ изученных гомологических рядов, имеющих в своём составе 5 атомов углерода и назвать их, подчеркнуть функциональные группы. (Работа в парах) (пентан, пентен, пентадиен -1,3, пентин-1, пентанол, пентаналь, пентановая кислота.)

3. По структурным формулам веществ ребята определяют принадлежность к гомологическому ряду и называют их.

4. Среди предложенных веществ найти гомологи метана, этина, этилового спирта и т.д. (См учебник Н.Е Кузнецова и др. 9 класс. Большое разнообразие заданий )

5.Вопросы.

С какими изученными веществами вы сталкивались в жизни?

Почему алканы получили название предельных – насыщенных?

Почему их называют парафинами?

Почему остальные представители углеводородов назвали ненасыщенными ?

Почему органических соединений значительно больше, чем неорганических?

Оцениваем знания учащихся

IV. Итог.

Сегодня на уроке мы с вами изучили гомологические ряды различных классов органических веществ. Их характерные особенности и общие признаки.

Узнали одну из причин многообразия органических соединений

Что ещё вы хотели бы узнать об этих соединениях?

Домашнее задание.

Записи в тетради, обратить внимание на особенности гомологических рядов.

Правила, в учебнике. Параграф « Предельные углеводороды» до химич еских свойств .

Литература.

О.С. Габриелян. Химия. 9 класс.М.:Дрофа,2007.

Сгибнева Е.П., Скачков А.В.Современные открытые уроки химии 8 -9 классы. Ростов н/Д «Феникс» 2002

Тема: КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ, ОСНОВЫ НОМЕНКЛАТУРЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Цели урока:

образовательные: Сформировать понятия изомерии, структурной формулы, изомеров. Познакомить с принципами классификации органиче­ских соединений по строению углеродной цепи и по функциональ­ным группам и на этой основе дать первоначальный обзор основных классов органических соединений. Дать общее представление об основных принципах формирования названий органических соединений по международ­ной номенклатуре.

воспитательные: Формирование научной картины мира, воспитание чувства патриотизма на примере Бутлерова.

развивающие: Развивать умения учащихся сравнивать, обобщать, проводить аналогию.

Тип урока : урок комбинированный

Методы ведения :

общие: объяснительно-иллюстративный

частные : словесно-наглядный

конкретные : беседа

Оборудование : схема класси­фикации органических соединений

План

1.Организационный момент – 5 мин

2.Проверка домашнего задания – 25 мин

3.Объяснение и закрепление нового материала – 55 мин

4.Домашнее задание - 3 мин

5.Итоги урока – 2 мин

Ход урока

1.Организационный момент: Приветствие, проверка посещаемости.

2. Проверка домашнего задания

? какая связь называется сигма связью?

какая связь пи?

Назовите механизмы разрыва химической связи

3.Объяснение нового материала:

Классификация органических веществ

На прошлом занятии мы говорили, насколько велико число известных органических соедине­ний. В этом безбрежном океане легко утонуть даже опытному химику. Поэтому ученые всегда стремятся классифи­цировать какое-либо множество «по полочкам», навести порядок в своем хозяйстве. Кстати, не мешает это делать и каждому из нас со своими вещами, чтобы в любой момент знать, где что находится.

Классифицировать вещества можно по разным признакам, на­пример, по составу, строению, свойствам, применению - по столь привычной логической системе признаков. Т. к. в состав всех органи­ческих соединений входят атомы углерода, то, очевидно, важнейшим признаком классификации органических веществ может служить по­рядок их соединения, т. е. строение. По этому признаку все органи­ческие вещества разделены на группы в зависимости от того, какой остов (скелет) образуют углеродные атомы, включает ли этот остов какие-либо иные атомы, кроме углерода.

Давайте рассмотрим более подробно данную классификацию, используя следующую схему:

атомы углерода, соединяясь друг с другом, могут образовывать цепи различной длины. Если такая цепь не замкнута, вещество относит­ся к группе ациклических (нециклических) соединений. Замкнутая це­почка углеродных атомов позволяет назвать вещество циклическим. Атомы углерода в цепочке могут быть связаны как простыми (одинарными), так и двойными, тройными (кратными) связями. Если в молекуле есть хотя бы одна кратная углерод-углеродная связь, она называется непредельной или ненасыщенной, в противном слу­чае - предельной (насыщенной). Если замкнутую цепочку циклического вещества составляют только атомы углерода, оно называется карбоциклическим. Однако вместо одного или нескольких атомов углерода в цикле могут оказаться атомы других элементов, например азота, кислорода, серы. Их иног­да называют гетероатомами, а соединение - гетероциклическим. В группе карбоциклических веществ есть особая «полочка», на которой расположены вещества с особым расположением двойных и одинарных связей в цикле. одно из таких веществ - бензол. Бензол, его ближайшие и дальние «родственники» называются ароматическими вещества­ми, а остальные карбоциклические соединения - алициклическими.

В основе классификации лежит строение молекулы.

Ациклические соединения – соединения с открытой (незамкнутой) цепью углеродных атомов. Такие соединения называют также алифатическими соединениями или соединениями жирного ряда.

Предельные соединения – соединения, имеющие в своём составе одинарные связи.

Непредельные соединения – соединения, в которых присутствуют двойные или тройные (кратные) связи.

Циклические соединения – соединения, в которых углеродные атомы образуют циклы, бывают карбоциклическими и гетероциклическими.

Карбоциклические – циклические соединения, образованные только углеродными атомами, бывают алициклическими и ароматическими.

Гетероциклические соединения – циклы, в состав которых кроме атомов углерода входят и другие атомы – гетероатомы (азот, сера, кислород)

Основные классы органических соединений

Углеводороды – наиболее простые органические соединения, в состав которых входят только углерод и водород. Они бывают предельными (алканы), непредельными (алкены, алкины, алкадиены и др.) и ароматическими (арены).

При замене атомов водорода в углеводороде на другие атомы или группы атомов – функциональные группы – образуются многочисленные классы органических соединений (спирты, альдегиды, кетоны, карбоновые кислоты, эфиры, амины, аминокислоты и др).

Запишем таблицу:

Класс соединений

Функциональная группа

Название функциональной группы

Пример соединения данного класса

Название

Гидроксильная

Метанол (метиловый спирт)

Гидроксильная

Альдегиды

Карбонильная

Метаналь (формальдегид)

Карбонильная

CH 3 -C(=O)-CH 3

Пропанон-2 (ацетон)

Карбоновые кислоты

Карбоксильная

Этановая кислота (уксусная кислота)

X (X=Cl, Br, F, I)

Галогенная

Хлорметан

Аминогруппа

Этиламин

Амидогруппа

Ацетамид

Нитросоединения

Нитрогруппа

Нитроэтан

Аминокислоты

COOH и - NH 2

Карбоксильная и аминогруппы

Аминоуксусная кислота (глицин)

Номенклатура органических веществ

Номенклатура - это система названий, употребляющихся в какой-либо науке.

На заре развития органической химии известных веществ жи­вой природы было достаточно мало. Ученые той поры могли позво­лить себе придумывать для каждого вещества собственное название, которое часто даже не укладывалось в одно слово, да еще и не одно. Такие названия чаще всего отражали проис­хождение вещества или наиболее яркое его свойство: уксусная кисло­та, горькоминдальное масло (бензальдегид), глицерин (от греч.- сладкий), формальдегид (от латинского - муравей). Та­кие названия именуются тривиальными. Тривиальная номенклатура – исторически сложившиеся названия. Они широко распростране­ны в химии для обозначения веществ простого строения. С накоплением экспериментального материала выяснилось, что многие вещества обладают похожими свойствами, т. е. принадле­жат к одной группе (классу) соединений. На все вещества данного класса стали распространять похожие названия веществ.

Число известных органи­ческих соединений растет в геометрической прогрессии. Химикам разных стран стало трудно общаться, поскольку одни и те же вещества имели различные названия, а под одним названием подразумевали не­сколько веществ. Возникли большие сложности с названиями сложных молекул. Чтобы разрешить эту проблему, химики всех стран, входящих в Международный союз теоретической и прикладной химии (ИЮПАК), создали специальный комитет, который выработал основы единой для всех органических веществ номенклатуры. Эту номенклатуру называют международной или номенклатурой ИЮПАК.

Для того чтобы уметь пользоваться ею, нужно хорошо знать названия первых представите­лей гомологического ряда предельных углеводородов (от этана до де­кана) и нескольких простейших предельных радикалов (метил, этил, пропил).

Запишем таблицу:

Названия алканов и алкильных заместителей

Основные принципы номенклатуры ИЮПАК

1.Основу названия вещества составляет название предельно­ го углеводорода с тем же числом углеродных атомов, что и в самой длинной цепи ациклической молекулы.

    Положение заместителя, функциональных групп и кратных связей в главной цепи обозначается с помощью цифр.

    Заместители, функциональные группы и кратные связи указываются в названии с помощью префиксов (те же приставки, но специфические, химические) и суффиксов.

    При написании названия все цифры отделяются друг от друга запятыми, а от букв - дефисами.

? Задание : Определите к какому классу относятся соединения и дать названия

СН 3 – СН = СН - СН 3 Н 2 N - СН 2 - СООН

CН 3 – СН 2 – СН 2 – СН 2 _ - СН 3 CН 3 – СН 2 – СН 2 – ОН

CН 3 – СН 2 – NН 2 CН 3 – СН 2 – СН 2 – NО 2

Рассмотрим изомерию органических веществ

? Что такое изомерия?

Пример: CН 3 – СН 2 – СН 2 – СН 2 - СН 3 CН 3 – СН 2 (СН 3) – СН 2 –- СН 3

3. Домашнее задание:

Л.А. Цветков «Органическая химия – 10» §3;

4. Итоги: Таким образом, сегодня мы познакомились с классификацией, номенклатурой и изомерией органических веществ. Оценки за урок.

Классификация органических веществ.

Химию можно разделить на 3 большие части: общую, неорганическую и органическую.

Общая химия рассматривает закономерности, относящиеся ко всем химическим превращениям.

Неорганическая химия изучает свойства и превращения неорганических веществ.

Органическая химия это большой и самостоятельный раздел химии, предметом изучения которого, являются органические вещества:

- их строение;

- свойства;

- методы получения;

- возможности практического использования.

Название органической химии предложил шведский ученый Берцелиус.

До начала 19 века все известные вещества делили по их происхождению на 2 группы:

1) вещества минеральные (неорганические) и

2) вещества органические .

Берцелиус и многие ученые тех времен считали, что органические вещества могут образовываться только в живых организмах при помощи некой «жизненной силы». Такие идеалистические взгляды назывались виталистическими (от лат. «vita» - жизнь). Они задерживали развитие органической химии как науки.

Большой удар взглядам виталистов нанес немецкий химик В. Велер . Он впервые получил органические вещества из неорганических:

В 1824 г. – щавелевую кислоту, а

В 1828 г. – мочевину.

В природе щавелевая кислота встречается в растениях, а мочевина образуется в организме человека и животных.

Подобных фактов становилось все больше.

В 1845 г. нем. ученый Кольбе синтезировал уксусную кислоту из древесного угля .

В 1854 г. французский ученый М. Бертло синтезировал жироподобное вещество.

Становилось ясно, что никакой «жизненной силы» не существует, что вещества, выделенные из организмов животных и растений, могут быть синтезированы искусственным путем, что они имеют ту же природу, что и все прочие вещества.

В наши дни органическими веществами считают углеродсодержащие вещества, которые образуются в природе (живых организмах) и могут быть получены синтетическим путем. Поэтому органическую химию называют химией соединений углерода .

Особенности органических веществ .

В отличие от неорганических, органические вещества имеют ряд особенностей, которые обусловлены особенностями строения атома углерода.

Особенности строения атома углерода.

1) В молекулах органических веществ атом углерода находится в возбужденном состоянии и проявляет валентность, равную IV.

2) При образовании молекул органических веществ электронные орбитали атома углерода могут подвергаться гибридизации (гибридизация это выравнивание электронных облаков по форме и энергии ).

3) Атомы углерода в молекулах органических веществ способны взаимодействовать друг с другом, образуя цепи и кольца.

Классификация органических соединений.

Существуют различные классификации органических веществ :

1) по происхождению,

2) по элементному составу,

3) по типу углеродного скелета,

4) по типу химических связей,

5) по качественному составу функциональных групп.

Классификация органических веществ по происхождению .

Классификация органических веществ по элементному составу.

Органические вещества

углеводороды

кислородсодержащие

Кроме углерода, водорода и кислорода содержат азот и другие атомы.

Состоят из углерода и водорода

Состоят из углерода, водорода и кислорода

Предельные УВ

Непредельные УВ

Аминокислоты

Ароматические УВ

Альдегиды

Карбоновые кислоты

Нитросоединения

Эфиры (простые и сложные)

Углеводы

Классификация органических веществ по типу углеродного скелета.

Углеродный скелет – это последовательность химически связанных между собой атомов углерода.

Классификация органических веществ по типу химических связей.

Классификация органических веществ по качественному составу функциональных групп.

Функциональная группа постоянная группа атомов, которая определяет характерные свойства вещества.

Функциональная группа

Название

Класс органических в-в

Суффиксы и префиксы

-F, - Cl, - Br, - J

Фтор, хлор, бром, йод (галоген)

галогенопроизвоные

фтрометан

хлорметан

бромметан

йодметан

гидроксил

Спирты, фенолы

- С = О

карбонил

Альдегиды, кетоны

- аль

метаналь

- СООН

карбоксил

Карбоновые кислоты

метановая кислота

- N О2

нитрогруппа

Нитросоединения

Нитро-

нитрометан

- N Н2

аминогруппа

- амин

метиламин

Урок 3-4

Тема: Основные положения теории строения органических соединений

.

Причины многообразия органических веществ (гомология, изомерия ).

К началу второй половины XIX века было известно достаточно много органических соединений, но единой теории, объясняющей их свойства, не существовало. Попытки создания такой теории предпринимались неоднократно. Успехом не увенчалась ни одна.

Созданием теории строения органических веществ мы обязаны .

В 1861 году на 36 съезде немецких естествоиспытателей и врачей в г. Шпейере Бутлеров делает доклад, в котором излагает основные положения новой теории – теории химического строения органических веществ.

Теория химического строения органических веществ возникла не на пустом месте.

Объективными предпосылками ее появления явились :

1) социально-экономические предпосылки .

Бурное развитие промышленности и торговли с началаXIX столетия предъявляли высокие требования ко многим отраслям науки, в том числе и органической химии.

Они поставили перед этой наукой новые задачи :

- получение красителей синтетическим путем,

- совершенствование методов переработки с/х продуктов и др.

2) Научные предпосылки .

Фактов, требовавших объяснения было много:

- Ученые не могли объяснить валентность углерода в таких, например, соединениях, как этан, пропан и др.

- Ученые химики не могли объяснить почему два элемента: углерод и водород могут образовывать такое большое количество различных соединений и почему орг. веществ существует так много.

- Было непонятно - почему могут существовать органические вещества с одинаковой молекулярной формулой (С6Н12О6 – глюкоза и фруктоза).

Научно обоснованный ответ на эти вопросы и дала теория химического строения органических веществ.

К моменту появления теории многое уже было известно :

- А. Кекуле предложил четырехвалентность атома углерода для органических соединений.

- А. Купер и А. Кекуле высказали предположение об углерод-углеродной связи и о возможности соединения атомов углерода в цепи.

В 1860 г . на Международном конгрессе химиков были четко определены понятия об атоме, молекуле, атомном весе, молекулярном весе .

Суть теории химического строения органических веществ можно выразить следующим образом :

1. Все атомы в молекулах органических веществ соединены между собой в определенном порядке химическими связями согласно их валентности.

2. Свойства веществ зависят не только от того, какие атомы и сколько их входит в состав молекулы, но и от порядка соединения атомов в молекуле .

Порядок соединения атомов в молекуле и характер их связей Бутлеров назвал химическим строением .

Химическое строение молекулы выражается структурной формулой , в которой символы элементов соответствующих атомов соединяются черточками (валентными штрихами) которые обозначают ковалентные связи.

Структурная формула передает :

Последовательность соединения атомов;

Кратность связей между ними (простые, двойные, тройные).

Изомерия - это существование веществ, имеющих одинаковую молекулярную формулу, но разные свойства.

Изомеры – это вещества, имеющие одинаковый состав молекул (одну и туже молекулярную формулу), но различное химическое строение и обладающие поэтому разными свойствами.

3. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы можно предвидеть свойства.

Свойства веществ зависят от типа кристаллической решетки.

4. Атомы и группы атомов в молекулах веществ взаимно влияют друг на друга.

Значение теории.

Созданная Бутлеровым теория сначала была встречена научным миром отрицательно, т. к. ее идеи противоречили господствующему в то время идеалистическому мировоззрению, но через несколько лет теория стала общепризнанной, этому способствовали следующие обстоятельства:

1. Теория навела порядок в том невообразимом хаосе, в котором была органическая химия до нее. Теория позволила объяснить новые факты, доказала, что с помощью химических методов (синтеза, разложения и др. реакций) можно установить порядок соединения атомов в молекулах.

2. Теория внесла новое в атомно-молекулярное учение

Порядок расположения атомов в молекулах,

Взаимное влияние атомов

Зависимость свойств от молекулы вещества.

3. Теория сумела не только объяснить уже известные факты, но и дала возможность предвидеть свойства органических веществ на основании строения синтезировать новые вещества.

4. Теория позволила объяснить многообразие химических веществ.

5. Она дала мощный толчок синтезу органических веществ.

Развитие теории шло, как и предвидел Бутлеров, главным образом по двум направлениям :

1. Изучение пространственного строения молекул (реального расположения атомов в трехмерном пространстве)

2. Развитие электронных представлений (выявление сущности химической связи).

Похожие публикации